M-Ary Data Transmission

Topics to be covered in this video and subsequent ones
* Orthogonal Functions and Signal Space Representation
* Gram-Schmidt Orthogonaliztion Procedure

* Optimum Receiver for Binary Transmission (Revisited using signal space
concept)

e Optimum Receiver for M-Ary Transmission (using signal space representation)
* M-ary Coherent Amplitude-Shift Keying (M-ASK)

* M-ary Coherent Phase-Shift Keying (M-PSK)

* M-ary Coherent Frequency-Shift Keying (M-FSK)

* M-ary Quadrature Amplitude Modulation (M-QAM)

* Union Bound on the Symbol Probability of Error

 Comparison of the various M-ary modulation techniques




The Binary Communication System (Revisited)
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Assumptions

* |[n binary data transmission over a communication channel, logic 1 is represented by a
signal s;(t) and logic 0 by a signal s, (t).

* The time allocated for each signal is the bit duration T}, (7 in the previous chapter) in
the case of binary and T for the case of M-ary.

* The datarateis R, = 1/T,, bits/sec.

* The channel noise n(t) is additive white Ggussian (AWGN) with a double-sided PSD of
N,y/2 W/Hz, mean E{n(t)} = 0, R,,(1) = 7°5(T). Noise is assumed to be added at the
front end of the receiver (with variance N,72).

* The data component at the front end of the receiver is assumed to be an exact replica
of the transmitted signal, in the sense that the transmission bandwidth of the medium
is wide enough to reproduce the signal without distortion.

* Bits in different time intervals are assumed independent.
* The signal to be processed by the receiver is the noisy signal y(t) = s;(t) + n(t)

* Based on y(t), the task of the receiver is to decide whether a 1 or a 0 was
transmitted during each transmission slot T with minimum probability of error.

* The approach is based on the signal space where time functions are represented by
numbers, which may be deterministic or random depending on the type of signa?!.



Geometric Representation of Signals (Signal Space Concept)
6,1 Wish to represent two arbitrary signals s1(t) and s2(t) as linear
| combinations of two orthonormal basis functions ¢1(t) and ¢2(t).

@ ¢(t) and ¢,(t) are orthonormal if:
) and 02 <05 (8),01(8) > =1

Th <0, (t),0,(t) >=1
Yo (t)dt = O (orth lity), e
: ¢1(t)p2(t)c (orthogonality ), <@ (), 0,(t) >=0
Tb Tb '
40 o7 (t)dt = / ¢3(t)dt = 1 (normalized to have unit energy).
0 0
. . . _ Signal components.
To find 511 multiply both sides by
D.(2) , integrate over (0, T ), and @ [he representations are % These are numbers
make use of the properties of the
basis functions. Sl(t) = 811‘?5'1 (t) + 512@2(15)3.
=S
Th H Sg(t) = S9101(t) + Sggtii'g(t).

Tp
jo 51(0)01(O)dt = j 51101 (D)0, (D) dt

0

T
Tp L , . ;o
+j S1202(1)941(t)dt where - sij = /U (005 ()L, 4,5 € {132}"’4
0
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Signal Space Representation: Energy, Distance, and Probability of Error

C By = [1°(s1(0)%dt = [)*(51101 () + 5120,(D))"dt,
*Ey = JFOTb(S1(t)2dt = (511)°+(512)%, Signal Energy
*E; = JFOTb(Sz(t)Zdt = fOTb(521¢1(t) + 522¢2(t))2dt
* E; = JFOTb(Sz(t)Zdt = (521)°+(522)%, Signal Energy

F
»di; = Jo "(51(t) — s2(0)?dt = (511 — S21)°+(512 — 522)°, Square of the

Distance Between two Signals

[7b(s1(D)—s2(D)) dt
\ 2Ny

oPZ:Q

_ di2 \. o -
=Q (\/TNO), Bit Error Probability
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Geometric Representation of Signals: Summary

(511, S12) s1(t) = s1101(t) + s1202(t), Signal Representation
B s2(t) = s2101(t) + s2202(1),

T
Sii = s;(t)o,(t)dt, i,j € {1,2}, Signal Coefficients
(521,S22) J /0 J
- 5,(1)

Tp
- . - (1) di, = (51(t) — s2(¢))%dt
S Sy 0
= (511 — S21)*+(512 — $22)°
_ (1o 2 3. _ 2 2

E, = (s1(O)°dt = (511)“+(512) - >
0 R \/fo *(51(0) —52(1))"dt Q( diz
T b= -

E; = Jr b(Sz(t)zdt = (521)%+(s22)° 2No V2No
0

6

|



Gram-Schmidt Method: Basis for a Two-Dimensional Space

* The Gram-Schmidt method is a procedure for
generating a set of orthonormal basis functions from
a given set of functions (s{(t), s, (%))

* The original set of functions may be dependent or
independent, but the basis functions are both

* Linearly independent and
* Orthonormal.



Gram-Schmidt Method: Basis for a Two-Dimensional Space
%) Correlation Coefficient @ Let ¢1(t) = ﬂ Note that s1; = +/E7 and s12 = 0.

— A p = COS(C!) *\fEl (t)
@ Project s,(t) = 52 onto t) to obtain the correlation
J 2( ) \/E‘—:2 ‘i’l( )
0 coefficient:
o0 & A T 5,(t) 1T
2
, P = (;51 (t)dt = / Sl(t)SQ (t)dt.
s o o VE: VEiE; Jy
; @ Subtract pe1(t) from s,(t) to obtain ¢y (t) = iﬁ% — pp1(t).
0 9 @ Finally, normalize ¢,(t) to obtain:
__ bt Do (t
_1< p=cos(a) <1 Do(t) = 10 — = 28 >
/ VIt ey ae - Vi-e
s, = component | to @,(t) 1 Sg(t) psl(t)
+component 1 to 04(t) — [ — ] :
Unit Circle 1—p? [VE2 VI



Gram-Schmidt Method: Basis for a Two-Dimensional Space

1 (e
@, (1) Correlation Coefficient p= j s1(t)sz(t)dt
— ) p _ COS(“) E{E; Jo _
bi(t) = s1(t)  s11 = +vEj and s12 = 0.
. - \/E—l-.
bo(t) = 1 so(t) psl(t)}
& V1i—p2 |VE2 VEi |’

Ty

S; = [ 53(t)1 (t)dt = py/Ep, |Ezcos(a
0

S99 = (\/1 —_ ,02> \/Egi \/E_ZSin(“)

1%
d21 = \/ [Sg(ﬁ) — Sl(t)]th
0
E1 — 2p\/ E1E5 + Eos.

s,(1)

-

1< p=cos(a) <1
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Gram-Schmidt Method: M-Ary Case

P1(t) = s1(6)
.\/fff;c s3(t)dt
$i(t) = A0 i=23,...,N
\/ff; &()]* dt
#i(t) = - §P~z‘j%(t)
| vE, =7
g = i}%—z@(t)dt, = 12 v gl 1l

If the waveforms {s;(t)}, form a linearly independent set, then
N = M. Otherwise N < M.

10



Example: Polar Non-return to zero Binary Signals

5, (1) . s, (1) S,(t) = —s4(t) ; Linearly Dependent
TE]_ = El =F = (Sl(t)zdt = VZTb -
0 1 Ty
Vv = f s1(t)s,(t)dt = —1
p E.E, Jo 1 2
T,
0 T, ! 0 !
(a) v For the case of binary
antipodal signaling, i.e.,
¢"f) when s,(t) = —s,(t), we
¢1(t) = s, ()/VE need only one basis
l/m f-unctlon since signals are
5() 5. (1) linearly dependent. The
2 I
PR o - 4() Signalsare represented as:
0 T, . _ JVE
—E 0 JE s1(t) = VE@4(t)
(b) Sa1 © 511 s2(t) = —VE@, ()

(a) Signal set. (b) Orthonormal function. (c) Signal space representation. »



Example: Orthogonal Binary Signals

) {wf;: —E =B [ (0%t = VZTSI*(-” p=— f Tbsl(t)SZ(t)dt =  Linearlyindependent
S - b E{E, Jo and orthogonal
v ¢1(8) = 51 (O/VE ¥ For the case of binary signaling
T, when p =0 we need two bases
0 : 0 T, ~ "functions. The signals are
, bo(t) = 1 [sﬂ’ﬂ - p—sl(t}] represented as:
=V U 1 —p? LVE: VEL |
(a) V1= 2 Sl(t) — \/E¢1(t)
s2(t) = VE¢,(t)
¢, (1) 51(t) 9, (1)
| @1(t) B | ,(t) = s, (O/NE L0
S22 = \/E
VT, VT,
. I, .~ ; ; — — & $1(0)
’ s11=VE

12



Signal Space Representation of Signals: Revisited

In the previous video, we saw that if a signal space is characterized by two basis functions @4 () and
D, (t), and if we are given two signals s4(t) and s,(t), then s4(t) and s,(t) can be expressed as:

?,(1)
s1(t) = s1101(t) + s1202(1), (1) (S11,512);
52(1) = 52191 (f) - 522(’)2(1‘) S12 | s,(1)
& $21,522);
where Sij = / SI(f)C),(lL)dl‘ l] = {12} (2) \. ((,2)1 22)
J 0 S» 5, (
- B(1)

0 S S

* If the receiver is able to recover the coefficients s;; using (2), then according to (1) the signals are
completely known. This is of course true in the absence of noise. However, in the presence of
noise, a random variable is added to s;; that makes the decision more involved.

* The objective of the receiver is to retrieve the coefficients s;; using (2) and to make a decision
accordingly '



Receiver Structure

* Since each signal is characterized by two coefficients in the @4 (t) and @, (t) plane, then
we need two correlators that retrieve these coefficients at the receiver (figure below)

 However, in the presence of noise, the received signal is the sum of the transmitted signal
and the AWGN component. That is: r(t) =s;(t) + w(t).

* The componentsinthe @4 (t) and @, (t) directions are:

T
r1 = fy '(5:(®) + w(t))@1()dt = s;3 + Ny; Ny~N(0,No|2); r1~N(si1,Nol|2); 1, and r, are
ry = fOTb(Si(t) +w(t))0(8)dt = s;3 + Na; Na~N(0,Ng|2); 7,~N(si, No|2); independent

t=T,

I
If 54 is sent, then J'{-}dr E‘; T . Compute
T1~N(811, NOlZ); 0 rINN(SierOlz: (r,—s, }:+{r: —yl.l}:

1‘2~N(512,N0|2); r{r}=.';r-{fj+w[£

—N, In(P) Decision
—

";é]{.ir] Iz'}"ll' fﬂllf‘:ll.. 2

. I . K )

If s, is sent, then (o)dr S and choose

. J. the smallest
ri1~N(s21,No|2); % 0 r;~N(Si2, No|2)

ro~N(S22,Ng|2);

This decision rule
will be derived later.

@, (1)



The Minimum Probability of Error Receiver

* Given the correlator outputs r; and r,, we need to find the decision rule that minimizes
the probability of error

T
rqi = fO b(Si(t) + W(t))¢1(t)dt = Si1 —+ Nl; N1~N(O, N0|2); 1'1~N(Si1,N()|2); rl and rz are
ry, = fOT”(s,-(t) + w(t))(bz(t)dt = Sij2 + Ny; N;~N(0,Ny|2); r,~N(si2,Ng|2); independent

* The decision rule will be function of the received observations r; and r,, the signal
components s;; , and the noise power N as we shall derive next.

L

ro~N(S;2,No|2)

=1,
T, ‘
I{-}{]r 0 ~—l Compute
’ r1~N(Si1, Nol2) | (i=s2)"+(r—5,)
ri(f)=s.(1)+w(r) —N, In(P) Decision
o r L
@ (1) t=T, fori=1, 2
T ' i and choose This decision rule
Aﬂ?_» ﬂ.}dr _ﬂ‘ \ " > the smallest will be derived later.

@, (1)
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The Optimum Decision Rule

* Let Py and P, be the probability of sending signals s; and s, respectively.

* Let R4 and R, be the decision regions in the two-dimensional space
corresponding to signals s; and s,, respectively.

e If (rq, 7, € R{) decide s¢ (digit 1) Also. Else, decide s, (digit 0).

P, = P(send sq,decide s,) + P(send s,,decide s;) Qz(t)r

R, S1

Py = PyP(decide s|s;) + PyP(decide sylsy) | (5117512)
* .......
(rora) | e
...... B1(t)
RZ S2
®
(S21,822); "
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The Optimum Decision Rule
P, = P, fRz f(ry,72|b; = 1)drdr, + P, lef(T1;7'z|bi = 0)drqdr,

P, =P, Jr f(ry,r2lb; = 1)drdr; + Pz(j f(ryra|b; = 0)dridry — | f(ry,12|b; = 0)dridr;)

R, R R;

r" @ (t) Rl s
Py = PZJ f(ry,r2|b; = 0)drdr, .

R (511,512);

N .
{P1f(ry,12|b; = 1) — Pof(rq,72|b; = 0)}dr,dr, (ri,72)
R; 01(t)
Rz Sg@

The first term is a constant. So, to minimize P, (21, 22);

assign to R, all values of (4, ;) that make the integrand negative. That is,
Decide 0 when P,f(rq{,ry|b; =1) < Pof(r{,r5|/b; = 0)
Decide 1 when Plf(rl,rzlbi — 1) > sz(rl,rzlbi = O)
f(ry,r21b; = 1)
f(rl'r2|b — O)
This is known as the llkellhood ratio test

> —= Decide 1, otherwise decide 0
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Receiver Structure

* The probability of error is minimized when the following decision rule is employed:

: f(rirz|bi=1) P, :
D 1 > — 1); el ,
ecide 1 when F(riralbim0) = Py (1); else, decide O;

(x-p*
o f(ry,1rylb; =1) = f(ry |b; = 1)f(ry]b; = 1); due to independence ; X~N(u, 6* = N, 12); ! e 2mo?
\ 2mo?
e f(ry,r|b; =0) = f(y |b; =0)f(ry|b; = 0); due to independence
N

* f(ry by =1)~N (511» ); ; [y |by =1)~N (512, 20)

* f(rl |bl = O)NN( S21» ); rf(TZ |b - O)NN( S22, )
t=1T,
. T,

If 54 is sent, then J'[-}dr D; T | Compute

T1~N(811, NOlZ); 0 r1~N(Si17NO|2: [;I'—gl.I]:+[r:—gl.1]:

r2~N(512’ NO|2)’ r(r) =5,.[I]|+w[£ —N, In(P) Decision

If s, is sent, then
ri1~N(s21,No|2);
ry~N(s22, No|2);

T, >-<j: r and choose
J'['}df —O - the smallest

0 r2~N(Si2, No|2)

This decision rule
will be derived later.

@, (1)



Optimum Receiver: Binary Case

lp
. . . . P
('I‘l — 311)2 -+ (?‘g — 312)2 E (T‘l — 321)2 -+ (?‘2 — ng i\ml[l (ﬁ-j)
Op

@ For the special case of P, = P, (signals are equally likely):

1p
(ry — 811)% + (r2 — 512)° % (ry — 821)% + (r2 — 522)°.
Op
This is the minimum distance decision rule
The probability of error for Equally-probable signals is given by:

Ty 2
P, =Q 12 =Q fO (Sl(t) - (t)) dt As derived earlier
A/ ZNO \ ZNO
Tp
di, = (s1(t) — s2(£)*dt = (511 — S21)*+(512 — 522)
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rir)=s,(r)+wir)
-

Optimum Receiver : Matched Filter and Correlators

L]

[(o

t=T1,

@,(1)

T

@, (1)

hj(r) :Q[(T;, —1)

@, (1)

Compute R S1
(h—5,) +(rn—5,) ' (511%512]5
_N.In(P) Decision
LA} ] l * .
fori=1, 2
and choose ('."‘1, TZJ '
‘ ' @4(1)
the smallest
Rz 52
ey
(521,522);

hg(f}:ﬁ?jg(?},—ﬂ

Decision

Decision

Circuit

The receiver can be implemented in
terms of correlators and can, as well, be
implemented in terms of the matched
filters. Here, matched means that the
filters at the receiver are matched to
the basis functions used in the
transmission process. The two figures
on this slide are equivalent in terms of
performance. :



Summary of Results on the Binary Case

Minimum Distance rule that minimizes the probability of error. P20 R, S1

S14, S12);

Calculate: d% = (1"1 — 511)2 + (1"2 — 512)2 ( 12)

Calculate: d% — (1‘1 — 521)2 + (1'2 — 522)2 (T'1,*T2] '

Choose s, if d% < d5 04(t)
Rz 52 ”
T 2 Ty
P, =Q diz | _ Q \/fOb(Sl(t) —5O) & %ij =/ si(t)o;(t)dt, 1,5 € {1,2} (521, 522);
J2N, 2N, 0

T,
If 54 is sent, then J'[-}dr D‘; T . Compute
TINN(Sll,N()lZ); 0 r1~N(si1, No|2] (5 —5,) +(r,—5,)
r2~N(512’ NO|2)’ r(r) =.'i,.[r‘]|+w[£ —N, In(P) Decision

@, (1) t=T, fori=1, 2

If 5, is sent, then (o)dr I - and choose

r N(S N |2) J. —O the smallest \
1 21,4V 0 ’ 0 12~N(Siz, No|2) This decision rule

rp NN(SZZI NO | 2)r will be derived later.

@, (1)



M-Ary Transmission

* In M-ary transmission, a block of n binary digits are grouped together to form
one symbol (message).

* If T is the bit duration, thenT; = nT, is the symbol duration. The data rates
are related by: ‘R = Ry, /n.

* There arelM = 2™ possible symbols. Hence, we need M = 2" signals to be
transmitted.

* The signals can modulate a high frequency carrier in the amplitude, the phase,
frequency, and both the amplitude and the phase.

* We will study the following modulation techniques:

* M-ary ASK, M-ary PSK, M-ary FSK, and Quadrature Amplitude Modulation
(QAM).

* For each modulation scheme, we will consider the transmitter, the optimum

receiver, the probability of error, the power spectral density and the
bandwidth.


Sara Totah
Highlight

Sara Totah
Highlight

Sara Totah
Highlight

Sara Totah
Highlight

Sara Totah
Highlight

Sara Totah
Highlight

Sara Totah
Highlight


M-Ary Transmission

* In most of our analysis here, we will encounter M-ary transmission in a two-
dimensional space (except for the M-ary FSK), in which we need two basis
functions @ (t) and @, (t).

* In this space, the signals are represented as:

*51(t) = 8511 B1(8) + 512 D(E) So(t) = 521 B1(8) + S22 B2(0)
* 53(t) = 531 B1(¢) + 535 D(t) sy(t) = syq 01 (8) + Spy2 02(0)
* Where 51 = fOTS si(t) 0,1()dg, Si2 = fOTS si(t) O, (t)dt

* The receiver has to decide on which signal was transmitted based on the
received vector (r¢,7>).

* Note: To obtain the basis functions from the M given functions, one can use
the Gram Schmidt orthogonalization procedure. The number of basis
functions N<=M.
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Optimum Receiver for M-Ary Transmission

* The observation s?gce is to be Eartitioned into M regions, such that if the set of
measurements fall into region R, signal s, is declared true.

* |t is assumed here that all signals are equally probable.

* The receiver collects the measurements from the N correlators (r vector) and calculates
the distance to each of the N signals.

* It decides in favor of the signal closest to the (r vector).
B, (t)

Minimum Distance Rule R4 S1

®
Choose s, if d7 < dj; for all k signals R (511, S12);

(S31,532)

N L N . ®
2 k=1(Tk — sik)” < D k=1 Tk — SJ&)JQ - s
j=1,2,...,M; j #1. R, 2

* (S21,522);

@4 (t)




M-ary Coherent Amplitude-Shift Keying (M-ASK)
[2
st = W = cos(2mfet), 0 <t <Ts s;(t) = V;¢p,(t)

V,=(i—1)A

(i — DAJp1(2), ¢1(t) = \/Ticos(QWfCt), DLt LT,

i=1,2,...,.M. E;=({i-1A)* E;=V;)>
9](’) 53(’) 53(f) Sk(f) e SM—I(I) SM(f)
@ ® & @ ® ® = @,(1)
0 A 2A (k—DA (M-2)A (M-1)A
t =kT,
si{?) r() ' N Decision n,
> >(§)—> [ (o)ar . —>
\{ o Device
W) 6(0) b, = 32 _

N
WGN, strength Tﬂ watts/Hz

e

E,

2 2
T_s cos(2rf t)

Note: fOTs(qbl(t))z dt =1

In this case, we have M
signals. However, we
need only one base
function. The signals are
linearly dependent and
hence, every signal can
be expressed in terms
of this base function.

Since there is one base
function, the receiver
consists of one
correlator (multiplier
followed by an
integrator), a sampler,
and a decision device (set
of comparators).



Minimum-Distance Decision Rule for M-ASK

sp(t), if (k—%)&a{rl‘::(k—%)‘&?k:2?3?...,ﬂ&'—1
Choose ¢ s1(t), If r <%
sp(t), if rp>(M—3)A

f(rl 5;-(f))

(k—1)A

0 A S
S11 31
Choose s, (1) < S$21 . = Choose s,,(1)

Choose s, (1)

6



Minimum Distance Rule and Error Probability for two signals

s1(t) - 1 s (t) p; — Q( diz
i 5 JZN,
' A
| P, =
: . b Q( '_ZNO)
i |I D4(t)

S11 0 A 521
Choose s, (1) < Q(




Minimum-Distance Decision and Error Probability for M-ASK
£l
s

Choose s5,(f) <

Plerror]

Plerror|s;i(t)]

Plerror|s;(t)]

Plerror]

(k —DA

N

Choose s, (1)

M

5.(1))

=» Choose s, (1)

)~ P[si(t)]Plerror|si(t)]

i=1

20 (a/m) o

=2.3,..., M-1

0 (.\/ﬂ) L i=1,M
2(M — le (&f\/m) |

M

For a given M, Plerror] depends on the noise power (N) and the minimum distance 5. This

means that moving the origin of the signal constellation does not affect the performance!



Modified M-ASK Constellation

The maximum and average transmitted energies can be reduced, without
any sacrifice in error probability, by changing the signal set to one which

includes the negative version of each signal. E;, = (V; )2
. A 2 , .
si(t) =(21 —1— ﬂf)? = cos(2mf.l), 0<t<T,,1=1,2,..., M.
(a) o o o e o L =~ @ (1)
3A A0 A 3A .
2 2 2 2
(b) ° ° [} . . = ¢,(1)
"o —-2A —A 0 A 2A -
M | Es: Average Energy
SME A2 _ , (M?%*—-1)A?
E, = — = 21— 1—-— M) = :
v, i ;( 1 ) 5 per Symbol
E M? —1)A? 12log, M) E Eb: Average
E, = . _(M"—1) :},5:\/( 05s M) Energy per bit
log, M 121log, M M2 —1 ’
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Probability of Symbol Error for M-ASK

Plerror] = 28— 1) 6E _AM-1), ( [6logy M Ey Symbol error
T (M>=1)No ) M M?—1No ) probability

1 2(M —1 6logo, M E :
P[bit error] = IP[symbol error| = f'uEl ﬂi@ (\/ ﬂ;gz : Nb) (with Gray mapping) Bit error
082 — 0 T
probability

10"

=

Two comments:

Error probability: for a given
Eb/NO, increasing M results in an
increase in the error probability.

10}

M=16
(W=1/4T,)
10

M=§
(W=173T,

10 '}

Plsymbol error]

107} Bandwidth: Increasing M results

in a reduction in the bandwidth
by a factor of A = log, (M).

10 '}

10 - A
0 5 10 15 20 25
E,IN, (dB)

W is obtained by using the WT, = 1 rule-of-thumb. Here 1/T}, is the bit rate (bits/s). "
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Example of 2-ASK (BPSK) and 4-ASK Signals

Baseband information signal

—
-
I

Binary sequence:
1101101100

| | ] | | |
2Tb 3Th 4Tb 5Th 6Tb 7Th 8Tb 9Tb 10Tb

1 - cos(2mfy)t
0 - —cos(2mfy)t
(similar to BPSK)

4-ASK Signalling 11 - COS(ZTl'fO) t
01 - —cos(2mfy)t
10 - 2cos(2nfy) t
00 » —2cos(2mfy)t

0 Tb
BPSK Signalling
2 -
0
_2 -
| | 1 | ] | ] | 1 |
0 Tb 2Tb 3Th 4Th 5Th 6Thb 7Th 8Tb 9Th 10Tb
2 -
0
_2 -
! ! !

1
2Th 4Tb 6Th 8Thb 10Tb 11



M-ary Phase-Shift Keying (M-PSK)

- —r . .
si(t) = V cos [27rfct e 1)27r] . DL, E; = [,°(si(®)*dt = V*T/2;

M Same for all i

A fi: i b : — N2a '
i=1,2,...,M; fo.=k/T,, k integer; i Note: fOTS(¢1(t))2dt _ 4

T 2
e e (Po(1)) dt =1
s;(t) =V cos [(Z 1)27T] cos(2m f.t)+V sin [(Z I)QW] sin(2m f.t). T{O (¢2)
M M fo b1(t) P2 (t)dt = 0
‘ V cos(2mf.t) | V sin(2m7 f.t)
¢1(t) = , 92(t) = -
v E vV Es 0 5:(1) < 011

5,(1) € 001

si1 =/ s cos [ l_,l QW} , Si2 = \/ Egsin [ = QW} . Mesn

The signals lie on a circle of radius \/E,, and are spaced every 110 s,
27 /M radians around the circle.

5,(1) > 000
@ (1)

1116 5,4(1) & 100

¢, (t) = ICOS(anct) ¢ (t) —\/TZSSin(Zthct) 5,(1) > 101 .



Sara Totah
Rectangle

Sara Totah
Rectangle

Sara Totah
Rectangle

Sara Totah
Rectangle


M-ary Phase-Shift Keying (M-PSK)

s;(t) =V cos |2mf.t — (i — 1)2m 0<t<T, * Here, the amplitude of the
M | carrier remains constant,
v=1,2,...,1 M; f.=k/Ts, k integer; Es = V?T,/2 joules however the phase takes on
400 one of M possible values.
Use Gray Code T si) ool  Two base functions are
| needed to represent all
010 € 5,(7) 5, (1) <> 001 signals in the two-

dimensional signal space.
* The spacing between
51(¢) > 000 adjacent signals is AG =
(1) 21 /M radians.
* In this example, M=8 and
AO = % = 45 degrees.

* To minimize error, gray
§7(1) <> 101 coding is used.

110 > s5(1)

1116 54(1) 54 (1) € 100

Signal Energy E, = V4T, /2
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M-ary Phase-Shift Keying (M-PSK): Signal Space Representation

| 3 —1)2
s;(t) =V cos |2 f.t — < ]\[) ! 0<i <,
=k Py Mg . =ik T, b integery Hyi= V2T8/2 joules
O, (1)
(i — 1)27
il — ES 3 e R
821 COS [ Vi
5, (1)
. (2 —1)27
Sig2 = \/ EssIn
2 ! ﬂ/i( 1': 5,(1)
- ® - ¢ (1)

Sy (,)




Optimum receiver in a two-dimensional space
t=T

Tp
ry= (si(t) + w(t))@l(t)dt
0

ri1 =S8;1+ N1; Ny~N(0,Ny|2);
r(t)

Tp
ry, = (si(®) +w(®)D,(Hdt — ™
0

riy =S;2+ N2; N;~N(0,Ny|2);

o]

(1)

Compute
(rl — 35 ): + (rz — 35 )2
fori=12,..., M
and choose

the smallest

Decision

S

@, (1)

r1~N(s;1, No|2); Gaussian with mean s;1, variance N;|2

ro,~N(s;2, Nog|2); Gaussian with mean s;,, variance N;|2

Minimum Distance Rule

Calculate: d? = (ry — s11)% + (rz — 512)?

Calculate: d5 = (11 — 521)% + (1 — 523)?
Choose s, if d% < d5

-

r1 and r, are independent
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M-ary Phase-Shift Keying: Error Probability

Prlerror] = Prlerror|s;(t)] = Pr[ry, 7, fall outside Region 1|s,(t) transmitted]
= 1 — Pr[ry, ry fall in Region 1|s;(t) transmitted]

=% L= / j 1, Iz'bl (171(172

r1,r2ER1 Minimum Distance Rule
I
A Region 2
S, (t ) o Choose s, (1)

5, (1)

Region 1
Choose s,(7)

7 |
i)
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Probability of Error in M-PSK

* The distance between two neighboring symbols is

d,, =2 s.n(_j _ofdz)
min S P, =0

* Each symbol has 2 close neighbor symbols. |

* An approximation for the symbol error prob. |

Region 2
Choose s, (1)

5,(1)

Region |
Choose s, (1)

P ~ (Number of Signals at distance dmin)Q[ O, ]:z.Q( d, J

J2N. N,
/2\/Esin(ﬂj\ -
~2.Q M _2°Q£\/2NS sinz(&j

2N

0

ﬁ

0
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P~ (Number of Signals at distance dmin)Q£ O, ]:2.Q[ d,, j

Probability of Error in M-PSK

Region 2
Choose s, (1)

J2N, J2N "

2\/E sin| - $ ~
S M E . . (~« .
=2-Q =2-Q| ,[2—=sin*| —
2N N, M [ YEN
K ) l 0 | Region 1 '
P~ ZQ[ : }; QPSK; M=4 N
I\Io Note th at as M ___
E increases, the symbol

P~ 2Q \/0'293 N | for 8-PSK error probability

P ~ ZQE \/0.038 E

increases for the same

j; forl6-PSK symbol energy
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Symbol and Bit Error Probability of M-PSK

 When Gray coding is used, the symbol and bit error probabilities are

1
P c
log,(M) "~ >

* Moreover, the symbol energy is related to the bit energy by

related by: P, =

* The performance of digital communication systems is usually taken as
. E

the error probability versus N—b.

0

* The next figure depicts the symbol probability of error for M-PSK
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Performance of M-PSK

Psymbol error]
=

—— Lower bound
- = = Upper bound

0 5 10 15 20 25
1 E,/N (dB)

E, =—F
> " log,(M)

E . T
P~2. 2—=sin’| —
~2.q| [2F (Mj

0

As M increases, the
symbol probability of
error increases.

Note thatas M
increases, the spacing
between signals
around the perimeter
of the unit circle
becomes smaller, and
this results in a higher
probability of error

9
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M-ary Coherent Frequency-Shift Keying (M-FSK)
Signal Set:

Sm(t) = /ZTES cos2n(f,+mAf)t); m=1,2,.,. M, 0 <t<T

Orthogonality condition:
[ si®)sjt)dt = 0,i # j

The minimum frequency separation between signals to make them orthogonal

: 1 Ry
is Af =—=—
/ 2T, 2

All signals have the same energy
E.=E= fOTS s, ()% dt
As a result of this condition, there will be M basis functions

On(®) =220 = (2 cos2mfut); fin = fotmof
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M-ary Coherent Frequency-Shift Keying: Signal Space Representation

M-ary orthogonal FSK has a geometric presenation as
M-dim orthogonal vectors, given as

9,(1)
sy = (y/E,.0.0,--,0} ® 5.(1)
0 =(0.4E..0.0) E
: E 5, (1)
D C l. = @ (1)
8, = ([]? 0,- ..ﬁ[]q_\/fj) 5?(;}‘/?;
l D, (t)
Signals are orthogonal
VE
0.0



Minimum-Distance Receiver of M-FSK

Choose m; if

MM M
Z(Tk — st-,:,;)2 < Z(?‘k — Sj;f_)z
k=1 k=1

32132,,1“'.}, J?é"*

r(r) 5. (1)
__... ¢I('f) =]

5

Need M
correlators 5, (1)

ﬁf’.u(f):ﬁ

* The receiver consists of

—

T }T‘j?

Choose m,; if

i=1,2,...,M; j#i.

M correlators

Choose
the
largest

(corresponding to the M
basis functions)
followed by the decision
makaer.
 The decision maker
Decision employs the minimum
| distance rule.

* Receiver computes d?, d5, ..., d%

Decide s; when

d: < ds, di <d3, .., d5 < di

Or, equivalently when
rq > rip, 71 > rs,..,rg > ry
Exercise: Prove the latter
equivalency condition
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Example 1: Blnary FSK

= Modulation O o0 0T
- n\ /\F f\ /‘\ f\ /‘\ N\ﬂ
“r —» 51(t) = ?;’cos(zwflt) . UUU V UU Vi V
' 0<t<T
“0" —»s2(t) = 25 cos (27 fot) ’

b
= Fy, : transmitted signal energy per bit

T T,
[ " $2(t)dt = /U " $2(t)dt = E,

JO

= /.. transmitted frequency with separation Af = f, - f, Af =

2T, 2

= Af is selected so that 51 (t) and Sg(t)are orthogonal i.e.

T,
fo s1(£)so(t)dt = O



Example 1: Binary FSK

Two orthogonal basis functions are required

d1(t) = ﬁcas (2nfit) 0<t<T, s1(t) = \/Ebch(t)
; =
$2(t) = \/;bCGS (2rfat)  0<t<T, s2(t) = \/Ebﬂif’z(t)

Signal space representation
¢2(t)

1 /= Message dio2 = \/2E,
s1=1yE O point S? .\/E
b

sp = [0 /] Message point S1
G - ¢1(t)

/B,
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Example 1: Binary FSK

Observation vector

r=|[r1 ro] ¢2(t) R, , Decision boundary
7
= Message g B— S .
b : inimum Distance Rule
ri= [ r(t)pi(t)dt POINtS2 @ - 3
"1 ./o rB)eatie vV Eb /// o Decide s1 when
T / 1 2 2
Ty = /o b'r’(t)d)g(t)dt //' Message point S1 (r1 - \/E) + (12) ,
| > o » ¢1(8) | < ()% + (r, - VE)
7 . . . po
L’ Vv Ep This rule simplifies to
(r1,72) Decide s1 when

. o . : ry>r
The receiver decides in favor of §, if the observation vector r —

falls inside region R,. This occurs when r, > r,

When r, <r, , r falls inside region R, and the receiver decides
In favor of s, 6
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Example 1: Binary FSK

To calculate the error probability, we use the formula:

P. = (Number of Signals at distance dmin) Q( d2mN ):(1).(3{\/?] _ Q[\/Ej

where
d . =.,/2E
min b @2(@ R, » Decision boundary
7’

Message e

oint 8 d

P 2 .\”/Eb e

fff R1
»  Message point S1
7’
_ O - ¢1(t)
/f ‘\/Eb




Example 2: 3-ary FSK

To calculate the error probability, we use the formula:

. . . d J2E, E
P. = (Number of Signals at distance dmin) Q( i j:(g) .QL : ] _ ZQ[ : ]
where V2N, J2N, N

dmin — \/TES 0:(0)

Minimum Distance Rule

Calculate: (dy)? = (1 —VE)" + (r)? + (r3)? "
2 5
(d2)* = (r)* + (r; = VE) + (r3)? a0
2 0 s T
(dB)Z = (rl)z + (7‘2)2 + (1‘3 — \/E) )
Choose s1 when (d4)? < (d5)? and (d)? < (d3)? s,(t) ~"\JE.

Equivalently, Decide s1 when

- (rlJrZr T3)
rq > ro and rq > ri @, (1)



Error Probability in an M-ary FSK

To calculate the error probability, we use the formula:

P~ (Number of Signals at distance dmin) Q( d

J2N.

.ol Y2E | _ v _nol [E

where

dmin :\/TES

Es — (Iogz M )Eb

J

o5
® 5, (1)
JE.
0 \/f Sl:) = @ (1)
5,(1) 4?



Bandwidth Requirements of M-FSK

 Let M = 2% and let the M signals be orthogonal. The minimum frequency
separation between adjacent signals Af = %.

* The bandwidth B.W = (M — 1) () + 2R,

* For the case when M = 2,B.W = (%) + 2R, = SRS = gRb.
* For the case when M = 4,B. W = (%) + 2R, = %RS = %10};’(’4) = ZRb‘

10
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(Q) carriers:

M-ary Quadrature Amplitude Modulation (M-QAM)

> M-QAM are two-dim constellations and they involve inphase (1) and quadrature

“Ti cos(2mfct), 0<t < Ty,
2
,1 .l'? sin(2w fet), 0<t < T,

2 The ith transmitted M-QAM signal is:

s;(t)

quadrature carriers, F; = E”ﬁt- == 1”5_1- and 0; = tan~ ' (Vo.; /V1.;).

Viii/ % cos(2m fet) + Vg .iq/ TES sin(27 fct), ?E ‘

VvV Eiy| TE cos(2m fet — 60;)

Vi.i and Vg ; are the information-bearing discrete amplitudes of the two

2 In general, QAM symbols have different energies. The average symbol energy is

calculated as:

M
Es =) EiP[si(t)] = Zi= B
i=1

M _
i=1 E?

M

for equally-likely signals

In M-QAM, the messages
are encoded into both the
amplitude and phase of
the carrier.

QAM is a two-dimensional
encoding scheme and
requires two basis
functions.

The QAM scheme
represents bits as points in
a quadrant grid know as a
constellation map.

si(t) = a;¢p1 + b,
E; =a;*+ b,-2 (prove)
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Criteria for Selecting a Given Constellation

* Probability of Error: In signaling over AWGN, the most likely errors are those which confuse
a signal with its neighbors. To maintain the same symbol error probability, the distance
between the nearest neighbors are kept the same.

* Average Transmitted Energy: The most efficient signal constellation is the one that has the
smallest average transmitted energy.

» Simplicity in Modulation and Demodulation. E Gray Code
 Bandwidth Requirement. 0000 0100 1100 1000
Q O O 10 O
Star QAM
/,./”/’d\\.\ Constellation ooo1 o011 | 1101 1001
E;tf[r'(lf\]V[ |%) ///”é}\\\\\ (:} C:) 1 (:) (:j

1/1

Constellation /' /o \\@ >
(LT ;Q , \, ’ O 010 ©
%,

0011 0111 1111 1011

~— O OO0 O
Pt (
b %,

Q .
" O 0010 0110 1110 1010

/ '///’— 1 “\‘

g
,/ 4 @ ; //6\7\\\ :




Rectangular M-QAM: Modulation and Demodulation

@, (1
(R si(t) = a;¢p1 + b,
. . . . e L
Signal Components (a;, b;)
i ’ ’ I * 0 ' {741 A, A,A3A5A7A}
M =16 M=3 2’ 2’ 2" 2’27222’
. - -9- - - -9 -
! o | | | |
S SN BN L S 1 L 1 1
R 1[00[1 110100 ¢
I = ! = (1) 0 : : i
- - * - ”:l_1 & - . . | 3A
I mplitud -
A .- e ._,.,. [ é 2 A baseband PAM signal
2
. . . . . . . . 15 T 27 3T 41 ST 6T
A A |
A 2
L *--— *-——- - A
_3_

The signal components take value from the set of discrete values
{(2i —1—-M)A/2},i=1,2,..., % ;



M-ary QAM Transmitter

@ Each group of A = log, M bits can be divided into A; inphase bits
and Ao quadrature bits, where Ay + Agp = A.

@ Inphase bits and quadrature bits modulate the inphase and
quadrature carriers independently.

Inphase bits

p| Select V.

Infor. bits g De- Inphase ASK/

multiplexer

QQuadrature bits
» Select V,;

2’ T2 T2 2727727
Quadrature ASK /




M-ary QAM Receiver
Due to the orthogonality of the inphase and quadrature signals, inphase
and quadrature bits can be independently detected at the receiver.

=T
T N’ Inphase
[(e)dr |0 ASK  }—»
0 decision
r(f)=s;(1)+wl(r) 5 Decision
> Q,(r)z\/;ms{hrj:_r) Multiplexer f——»
) (=T
T, X Quadrature
f{-)dr —0 ASK |—»
0 decision
: ™ . . ™ .
A A DA A
@, (1) = |—sin(2x f.1) =3 3 > ;
¢ \/; / (b) Receiver

The most practical rectangular QAM constellation is one which
Ar = Ag = A/2, i.e., M is a perfect square and the rectangle is a square.



Implementation of Rectangular M-QAM

V0, (0)+V, 8,(D=5,1). i=12,...M This is an integrator
—~ "‘-—v_' "
?‘ | QAM signal . . - . s .
- : 3A A A 3A
Qplch;‘a‘»@— —{__ 80 =} cos2xf1) 8,(1) = 5 3 :

A bits| Select | | ™\ Matched | ¥\ A bits
v [T wiy [T L Slicer [— Receiver
o - \ i # V,,+w,
. 54t I A bits
Ao E (1 1) si(t) = a1 + b, '5‘ b
ﬁ . t=T, >
A, bits| Select _ Matched | ¥\ , Ay bits
— —H%]—h ) —0 Slicer ——»|
V 'y >§ filter Y, ,
I |;_J_,l + “U‘
Transmitter 9(1) = \[7 sin2x £1) Po(t) D S S S
A A A A Quadrature AS[{. Py (1) T+ A —] Rectangular QAM  Each group of A = logzM
Vij=-75.,-55,-35.,—5 My=2v=4 | E——2 S M =2"=32  can be divided into 4; in-
4,4.4 .4 UYUYTTTRY YT phase bits and 4, quadrature
2 22z 2 S S, Setiet, £ S Sl et bits where 4 = 4; + 4.
X x x Wil bt * ¥ (1) .
. .44 o3 e e K e e e e ““xh In-phase and quadrature bits
¢ = 35,75 Lol b Bl mphase ASK modulate the in-phase and
4,4 ) M = 2% =8 quadrature carriers
2772 Ay =12 " . 6
independently.



M-QAM Constellations: Average Energy and Minimum Distance

Rectangle E = 44%+4(24%) _ 15842 — A = |Eav
av 8 ' 1.5
® ®
4 Din =4
N = Number of neighbors at distance D ,,;,,= 2
M
Vi d'k
- Pe<mi>z2<z< ‘ )
e~ \ 2N,
k#i

A4 d.. d...
® ® ~ min . min
S Q(m> ’ Q(m)
A
_2.Q<\/2NO> :




M-QAM Constellations: Partitioning of the observation space

KRectangle
¢ ® ®
A
/ 4
K / \ o —
A
® ® ®

si(t) = a;¢p1 + b; P,

Ei = aiz ~+ biz

Use the minimum
distance rule to partition
the observation space
among the eight signals.

_ 44%+4(24%)

Eav

E,, = =154’ = 4= |-%

8
Dpin =24

1.5

N = Number of neighbors at distance D ,,;,,= 2

N dik
P(m) ~ ) 0 (

i)

k=1
k+i

dmin

=

e

dmin

8

|



P[symbol error]

Symbol Error Probability of M-QAM

107"

—— Exact performance
- | = = = Upper bound
10 '

0 5
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